Maternal germline-specific effect of DNA ligase I on CTG/CAG instability.
نویسندگان
چکیده
The instability of (CTG)•(CAG) repeats can cause >15 diseases including myotonic dystrophy, DM1. Instability can arise during DNA replication, repair or recombination, where sealing of nicks by DNA ligase I (LIGI) is a final step. The role of LIGI in CTG/CAG instability was determined using in vitro and in vivo approaches. Cell extracts from a human (46BR) harbouring a deficient LIGI (∼3% normal activity) were used to replicate CTG/CAG repeats; and DM1 mice with >300 CTG repeats were crossed with mice harbouring the 46BR LigI. In mice, the defective LigI reduced the frequency of CTG expansions and increased CTG contraction frequencies on female transmissions. Neither male transmissions nor somatic CTG instability was affected by the 46BR LigI - indicating a post-female germline segregation event. Replication-mediated instability was affected by the 46BR LIGI in a manner that depended upon the location of Okazaki fragment initiation relative to the repeat tract; on certain templates, the expansion bias was unaltered by the mutant LIGI, similar to paternal transmissions and somatic tissues; however, a replication fork-shift reduced expansions and increased contractions, similar to maternal transmissions. The presence of contractions in oocytes suggests that the DM1 replication profile specific to pre-meiotic oogenesis replication of maternal alleles is distinct from that occurring in other tissues and, when mediated by the mutant LigI, is predisposed to CTG contractions. Thus, unlike other DNA metabolizing enzymes studied to date, LigI has a highly specific role in CTG repeat maintenance in the maternal germline, involved in mediating CTG expansions and in the avoidance of maternal CTG contractions.
منابع مشابه
Cag.,ctg Trinucleotide Repeat Instability in the E. Coli Chromosome
Expanded CAG-CTG trinucleotide repeat tracts are associated with a number of hereditary neurodegenerative and neuromuscular diseases such as Huntington's disease, myotonic dystrophy and spinocerebellar ataxias. These diseases are characterized by the phenomenon of genetic anticipation, which is defined by a decrease in the age of onset and an increase in severity of the disease with successive ...
متن کاملBidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats.
More than 12 neurogenetic disorders are caused by unstable expansions of (CTG)•(CAG) repeats. The expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have shown that contractions of (CAG)(95) are more frequent when the repeat tract is transcribed. Here we determined whether transcription can promote repeat expansion, us...
متن کاملFidelity of primate cell repair of a double-strand break within a (CTG).(CAG) tract. Effect of slipped DNA structures.
At least 15 human diseases are caused by the instability of gene-specific (CTG).(CAG) repeats. The precise mechanism of instability remains unknown, though bacterial and yeast models have suggested a role for aberrant repair of double-strand breaks (DSBs). Using an established primate DSB repair system, we have investigated the fidelity of repair of a DSB within a (CTG).(CAG) repeat tract. DSB ...
متن کاملLarge expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells
Trinucleotide repeat expansion disorders (TRED) are caused by genomic expansions of trinucleotide repeats, such as CTG and CAG. These expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have demonstrated the involvement of DNA repair proteins in repeat instability, although the key factors affecting large repeat expansi...
متن کاملProofreading and secondary structure processing determine the orientation dependence of CAG x CTG trinucleotide repeat instability in Escherichia coli.
Expanded CAG x CTG trinucleotide repeat tracts are associated with several human inherited diseases, including Huntington's disease, myotonic dystrophy, and spinocerebellar ataxias. Here we describe a new model system to investigate repeat instability in the Escherichia coli chromosome. Using this system, we reveal patterns of deletion instability consistent with secondary structure formation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2011